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The United States spends more than $1B each year on initiatives such as the Amer-

ican Community Survey (ACS), a labor-intensive door-to-door study that measures

statistics relating to race, gender, education, occupation, unemployment, and other

demographic factors 1. Although a comprehensive source of data, the lag between

demographic changes and their appearance in the ACS can exceed half a decade. As

digital imagery becomes ubiquitous and machine vision techniques improve, automated

data analysis may provide a cheaper and faster alternative. Here, we present a method

that determines socioeconomic trends from 50 million images of street scenes, gath-

ered in 200 American cities by Google Street View cars. Using deep learning-based

computer vision techniques, we determined the make, model, and year of all motor

vehicles encountered in particular neighborhoods. Data from this census of motor vehi-

cles, which enumerated 22M automobiles in total (8% of all automobiles in the US), was

used to accurately estimate income, race, education, and voting patterns, with single-

precinct resolution. (The average US precinct contains approximately 1000 people.)

The resulting associations are surprisingly simple and powerful. For instance, if the
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number of sedans encountered during a 15-minute drive through a city is higher than

the number of pickup trucks, the city is likely to vote for a Democrat during the next

Presidential election (88% chance); otherwise, it is likely to vote Republican (82%).

Our results suggest that automated systems for monitoring demographic trends may

effectively complement labor-intensive approaches, with the potential to detect trends

with fine spatial resolution, in close to real time.

For thousands of years, rulers and policymakers have surveyed national populations in order to

collect demographic statistics. In the United States, the most detailed such study is the American

Community Survey (ACS), which is performed by the US Census Bureau at a cost of approximately

$250M per year 2. Each year, ACS reports demographic results for all cities and counties with a

population of 65,000 or more 3. However, due to the labor-intensive data gathering process, smaller

regions are interrogated less frequently, every three or five years. Thus, the most recent edition of

the ACS (the 2015 release) contains data collected in 2011 for some zip codes and 2015 for others,

reflecting a half decade lag between some ACS results and current demographics. Moreover, the

date of data collection for two regions can differ by up to five years, limiting the reliability of so-

cioeconomic comparisons. Taken together, such lags can impede effective policymaking, suggesting

that the development of alternative and complementary approaches would be desirable.

In recent years, computational methods have emerged as a promising tool for tackling difficult

problems in social science. For instance, Antenucci et al. have predicted unemployment rates from

Twitter 4; Michel et al. have analyzed culture using large quantities of text from books 5; and

Blumenstock et al. used mobile phone metadata to predict poverty rates in Rwanda 6. These

results suggest that socioeconomic studies, too, might be facilitated by computational methods,

with the ultimate potential of analyzing demographic trends in great detail, in real time, and at a

fraction of the cost.
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Here, we show that it is possible to determine socioeconomic statistics and political preferences

in the US population by combining publicly available data with machine learning methods. Our

procedure only requires labor-intensive survey data for a handful of cities to create nationwide

estimates. This approach allows for more frequent measurements of demographic information at a

high spatial resolution.

Specifically, we analyze 50 million images taken by Google Street View cars as they drove through

200 cities, neighborhood-by-neighborhood and street-by-street. We focus on the motor vehicles

encountered during this journey because over 90% of American households own a motor vehicle 7,

and because their choice of automobile is influenced by disparate demographic factors including

household needs, personal preferences, and economic wherewithal 8.

We demonstrate that, by deploying a machine vision framework based on deep learning - specif-

ically, convolutional neural networks - it is possible to not only recognize vehicles in a complex

street scene, but to reliably determine a wide range of vehicle characteristics, including make,

model, and year. Whereas many challenging tasks in machine vision (such as photo tagging) are

easy for humans, the fine-grained object recognition task we perform here is one that few people

could accomplish for even a handful of images. Differences between cars can be imperceptible to

an untrained person; for instance, some car models can have subtle changes in tail lights (e.g., 2007

Honda Accord vs. 2008 Honda Accord) or grilles (e.g., 2001 Ford F-150 Supercrew LL vs. 2011

Ford F-150 Supercrew SVT). Nevertheless, our system is able to classify automobiles into one of

2,657 categories, taking 0.2 seconds per vehicle image to do so. While it classified the automobiles

in 50 million images in 2 weeks, a human expert, assuming 10 seconds per image, would take more

than 15 years to perform the same task. Using the classified motor vehicles in each neighborhood,

we infer a wide range of demographic statistics, socioeconomic attributes, and political preferences
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Fig. 1. We perform a vehicular census of 200 cities in the United States using 50 million Google Street View images. In each image, we detect cars

with computer vision algorithms based on deformable part models (DPM) and count an estimated 22 million cars. We then use convolutional neural

networks (CNN) to categorize the detected vehicles into one of 2,657 classes of cars. For each type of car, we have metadata such as the make, model,

year, body type and price of the car in 2012.
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of its residents.

In the first step of our analysis, we collected 50 million Google Street View images from 3,068

zip codes and 39,286 voting precincts spanning 200 US cities (Fig. 1). Using these images and

annotated photos of cars, our object recognition algorithm (a “Deformable Part Model” 9) learned

to automatically localize motor vehicles on the street 10 (see Methods). We successfully detected

22 million distinct vehicles, comprising 32% of all the vehicles in the 200 cities we studied, and

8% of all vehicles in the United States. After localizing each vehicle, we deployed Convolutional

Neural Networks 11,12, the most successful deep learning algorithm to date for object classification,

to determine the make, model, body type, and year of each vehicle (Fig. 1). Specifically, we were

able to classify each vehicle into one of 2,657 fine-grained categories, which form a nearly exhaustive

list of all visually distinct automobiles sold in the US since 1990 (Fig. 1). For instance, our models

accurately identified cars (identifying 95% of such vehicles in the test data), vans (83%), minivans

(91%), SUVs (86%), and pickup trucks (82%). See Fig. S1.

Using the resulting motor vehicle data, we estimate demographic statistics and voter preferences

as follows. For each geographical region we examined (city, zip code, or precinct), we count the

number of vehicles of each make and model that were identified in images from that region. We

also include additional features such as aggregate counts for various vehicle types (trucks, vans,

SUVs, etc.), the average price and fuel efficiency, and the overall density of vehicles in the region

(see Methods).

We then partitioned our dataset, by county, into two subsets (Fig. 2). The first is a “training

set”, comprising all regions which lie mostly in a county whose name starts with ‘A’,‘B’, or ‘C’ (such

as Ada County, Baldwin County, Cabarrus County, etc.). This training set encompasses 35 of the

200 cities, ∼ 15% of the zip codes, and ∼ 12% of the precincts in our data. The second is a “test
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Fig. 2. We use all the cities in counties starting with ‘A’ and ‘B’ (shown in purple on the map) to train a model estimating socioeconomic data from car

attributes. Using this model, we estimate demographic variables at the zip code level for all the cities shown in green. We show actual vs. predicted maps

for the percentage of Black, Asian and White people in Seattle, WA (i-iii), the percentage of people with less than a high school degree in Milwaukee, WI

(iv) and the percentage of people with graduate degrees in Milwaukee, WI (v). (vi) maps the median household income in Tampa, FL. The ground truth

values are mapped on the left column and our estimated results are on the right column. We accurately localize zip codes with the highest and lowest

concentrations of each demographic variable such as the three zip codes in Eastern Seattle with high concentrations of Caucasians, one Northern zip

code in Milwaukee with highly educated inhabitants, and the least wealthy zip code in Southern Tampa.
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set”, comprising all regions in counties starting with the letters ‘D’ through ‘Z’ (such as Dakota

County, Maricopa County, Yolo County). We used the test set to evaluate the model that resulted

from the training process.

Using US Census and Presidential Election voting data for regions in our training set, we train

a logistic regression model to estimate race and education levels, and a ridge regression model to

estimate income and voter preferences on the basis of the collection of vehicles seen in a region. This

simple linear model is sufficient to identify positive and negative associations between the presence

of specific vehicles (such as Hondas) and particular demographics (i.e., the percentage of Asians)

or voter preferences (i.e., Democrat).

Our model detects strong associations between vehicle distribution and disparate socioeconomic

trends. For instance, several studies have shown that people of Asian descent are more likely to drive

Asian cars 13, a result we observe here as well: the two brands that most strongly indicate an Asian

neighborhood are Hondas and Toyotas. Cars manufactured by Chrysler, Buick and Oldsmobile are

positively associated with African American neighborhoods, which is again consistent with existing

research 14. And vehicles like pickup trucks, Volkswagens and Aston Martins are indicative of

mostly Caucasian neighborhoods. See Fig. S2.

In some cases, the resulting associations can be easily applied in practice. For example, the

vehicular feature that was most strongly associated with Democratic precincts was sedans, whereas

Republican precincts were most strongly associated with extended-cab pickup trucks (a truck with

rear-seat access). We found that by driving through a city for 15 minutes while counting sedans and

pickup trucks, it is possible to reliably determine whether the city voted Democratic or Republican:

if there are more sedans, it probably voted Democrat (88% chance) and if there are more pickup

trucks, it probably voted Republican (82% chance). See Fig. 3(a)iii.

7



As a result, it is possible to apply the associations extracted from our training set to vehicle

data from our test set regions in order to generate estimates of demographic statistics and voter

preferences, achieving high spatial resolution in over 160 cities. To be clear, no ACS or voting data

for any region in the test set was used to create the estimates for the test set.

To confirm the accuracy of our demographic estimates, we began by comparing them with

actual ACS data, city-by-city, across all 165 test set cities. We found a strong correlation between

our results and ACS values for every demographic statistic we examined. (The r-values for the

correlations were: median household income, r = 0.82; percentage of Asians, r = 0.87; percentage

of Blacks, r = 0.81; percentage of Whites, r = 0.77; percentage of people with a graduate degree,

r = 0.70; percentage of people with a bachelor’s degree, r = 0.58, percentage of people with some

college degree, r = 0.62, percentage of people with a high school degree, r = 0.65; percentage of

people with less than a high school degree, r = 0.54). See Fig. S3, S4 and S5. Taken together,

these results show our ability to estimate demographic parameters, as assessed by the ACS, using

the automated identification of vehicles in Google Street View data.

Although our city-level estimates serve as a proof-of-principle, zip code-level ACS data provides

a much more fine-grained portrait of constituencies. To investigate the accuracy of our methods

at zip code resolution, we compared our zip code-by-zip code estimates to those generated by the

ACS, confirming a close correspondence between our findings and ACS values. For instance, when

we looked closely at the data for Seattle, we found that our estimates of the percentage of people

in each zip code who were Caucasian closely matched the values obtained by the ACS (r = 0.84,

p < 2e − 7). The results for Asians (r = 0.77, p = 1e − 6) and African Americans (r = 0.58,

p = 7e− 4) were similar. Overall, our estimates accurately determined that Seattle, Washington is

69% Caucasian, with African Americans mostly residing in a few Southern zip codes (Fig. 2, i,ii).
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As another example, we estimated educational background in Milwaukee, Wisconsin zip codes,

accurately determining the fraction of the population with less than a high school degree (r = 0.70

p = 8e − 5), with a bachelor’s degree (r = 0.83, p < 1e − 7), and with postgraduate education

(r = 0.82, p < 1e− 7). We also accurately determined the overall concentration of highly educated

inhabitants near the city’s North East border (Fig. 2, iv, v). Similarly, our income estimates closely

match those of the ACS in Tampa, Florida (r = 0.87, p < 1e− 7). The lowest income zip code, at

the southern tip, is readily apparent.

While the ACS does not collect voter preference data, our automated machine learning procedure

can infer such preferences using associations between vehicles and the voters that surround them.

To confirm the accuracy of our voter preference estimates, we began by comparing them with the

voting results of the 2008 Presidential election, city-by-city, across all 165 test set cities. We found a

very strong correlation between our estimates and actual voter preferences (r = 0.73, p << 1e− 7).

See Fig. S5. These results confirm the ability of our approach to accurately estimate voter behavior

during a Presidential election.

While city-level data provides a general picture, precinct-level voter preferences identify trends

within a particular city. By comparing our precinct-by-precinct estimates to the 2008 Presidential

election results, we found that our estimates continued to closely match the ground truth data. For

instance, in Milwaukee, Wisconsin, a very Democratic city with 311 precincts, we correctly classify

264 precincts (85% accuracy (Fig. 3,b)). Most notably, we accurately determine that there are a few

Republican precincts in the South, West and Northeastern borders of the city. Similarly, in Gilbert,

Arizona, a Republican city, we correctly classify 58 out of 60 precincts (97% accuracy), identifying

one out of the two small Democratic precincts in the city (Fig. 3,b). And in Birmingham Alabama,

a city that is 23% Republican, we correctly classify 87 out of the 105 precincts (83% accuracy).
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Fig. 3. (a) i. and ii map the actual and predicted percentage of people who voted for Barack Obama in the 2008 presidential election (r=0.74). iii. maps

the ratio of detected pickup trucks to sedans in the 165 cities in our test set. As can be seen from the map, the ratio is very low in Democratic cities

such as those in the East Coast and high in Republican cities such as those in Texas and Wyoming. (b) Shows actual vs. predicted voter affiliations for

various cities in our test set at the precinct level. Democratic precincts are shown in blue and Republican precincts are shown in red. Our model correctly

classifies Casper, Wyoming as a Republican city and Los Angeles, California as a Democratic city. We accurately predict that Milwaukee, Wisconsin is

a Democratic city except for a few Republican precincts in the Southern, Western and North Eastern borders of the city.
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Overall, there was a strong correlation between our estimates and actual electoral outcomes at the

single-precinct level (r = 0.57, p < 1e− 7).

These results illustrate the ability of our machine learning algorithm to accurately estimate both

demographic statistics and voter preferences using a large database of Google Street View images.

They also suggest that our demographic estimates are accurate at single-precinct level, which is

higher than the finest resolution available for yearly ACS data. Using our approach, zip code or

precinct-level survey data collected for a few cities can be used to automatically provide up-to-date

demographic information for many American cities.

Thus, we find that the application of fully automated computer vision methods to publicly

available street scenes can inexpensively determine social, economic, and political trends in neigh-

borhoods across America. By collecting surveys for a few cities and inferring data for others using

our model, we can quickly determine demographic trends.

As self-driving cars with onboard cameras become increasingly widespread, the type of data we

use - footage of neighborhoods from vehicle-mounted cameras - is likely to become increasingly

ubiquitous. For instance, Tesla vehicles currently take as many images as were studied here every

single day. It is also important to note that similar data can be obtained, albeit at a slower pace,

using low-tech methods: for instance, by walking around a target neighborhood with a camera and

a notepad. Thus, street scenes stand in contrast to the massive textual corpora presently used in

many computational social science studies, which are typically constrained by such serious privacy

and copyright concerns that individual researchers cannot obtain the raw data underlying any given

published analysis.

Expanding our object recognition beyond vehicles 15, incorporating global image features 16–19,

other types of imagery, such as satellite images 20 and social networks 4 could considerably strengthen
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the present approach. Although such methods could be powerful resources for both researchers and

policymakers, their progress will raise important ethical concerns; It is clear that public data should

not be used to compromise reasonable privacy expectations of individual citizens, and this will be a

central concern moving forward. In the future, such automated methods could lead to estimates that

are accurately updated in real-time, dramatically improving upon the time resolution of a manual

survey. This might allow earlier detection of important socioeconomic trends, such as recessions,

giving policymakers the ability to enact more effective measures.

Materials and Methods

Here, we describe our methodology for data collection, car detection, car classification and de-

mographic inference. Some of these methods were partially developed in an earlier paper 10 which

served as a proof of concept focusing on a limited set of predictions (e.g. per capita carbon emission,

Massachusetts department of vehicle registration data, income segregation). Our work builds on

these methods to show that income, race, education levels and voting patterns can be predicted from

cars in Google Street View images. In the sections below, we discuss our dataset and methodology

in more detail.

Dataset While learning to recognize automobiles, a model needs to be trained with many images of

vehicles annotated with category labels. To this end, we used Amzaon Mechanical Turk to gather a

dataset of labeled car images obtained from edmunds.com, cars.com and craigslist.org. Our dataset

consists of 2,657 visually distinct car categories, covering all commonly used automobiles in the

United States produced from 1990 onward. We refer to these images as product shot images. We

also hired experts to annotate a subset of our Google Street View images. The annotations include

a bounding box around each car in the image and the type of car contained in the box. We partition
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the images into training, validation, and test sets. In addition to our annotated images, we gathered

50 million Google Street View images from 200 cities, sampling GPS points every 25 meters. We

captured 6 images per GPS point, corresponding to different camera rotations. Each Street View

image has dimensions 860 by 573 pixels and a horizontal field of view of approximately 90 degrees.

Since the horizontal field of view is larger than the change in viewpoint between the 6 images per

GPS point, the images have some overlapping content. In total, we collected 50,881,098 Google

Street View images for our 200 cities. They were primarily acquired between June and December

of 2013 with a small fraction (3.1%) obtained in November and December of 2014. See Supporting

Information for more detail on the data collection process.

Car Detection In computer vision, detection is the task of localizing objects within an image, and

is most commonly framed as predicting the (x, y, width, height) coordinates of an axis-aligned

bounding box around an object of interest. The central challenge for our work is designing an

object detector that is 1) fast enough to run on 50 million images within a reasonable amount of

time, and 2) accurate enough to be useful for demographic inference. Our computation resources

consisted of 4 Tesla K40 GPUs and 200 2.1 GHz CPU cores. As discussed in 10, we were willing to

trade a couple of percent in accuracy for a gain in efficiency. Thus, instead of using state-of-the-art

object detection algorithms such as 21, we turned to the previous state of the art in object detection,

deformable part models (DPMs) 22.

For DPMs, there are two main parameters that influence the running time and performance,

which are the number of components and the number of parts in the model. Tab. S2 provides

an analysis of the performance/time tradeoff on our data, measured on the validation set. Based

on this analysis, using a DPM with a single component and eight parts strikes the right balance

between performance and efficiency, allowing us to detect cars on all 50 million images in two weeks.
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In contrast, the best performing parameters would have taken two months to run and only increased

average precision (AP) by 4.5.

As discussed in 10, we also introduce a prior on the location and size of predicted bounding

boxes and use it to improve detection accuracy. Incorporating this prior into our detection pipeline

improves AP on the validation set by 1.92 at a negligible cost. Fig. S6(B) visualizes this prior. The

output of our detection system is a set of bounding boxes and scores where each score indicates the

likelihood of its associated box containing a car.

We converted these scores into estimated probabilities via isotonic regression 23. Isotonic regres-

sion learns a probability for each detection score subject to a monotonicity constraint. Concretely,

after sorting n validation detection scores s1, . . . , sn such that si ≤ si+1, and with yi a binary vari-

able denoting whether detection i is correct (has Jaccard similarity of at least 0.5 with a ground

truth car bounding box), isotonic regression solves the following optimization problem:

minimize
p1,...,pn

∑n
i=1 ‖yi − pi‖2

2

subject to pi ≤ pi+1, 1 ≤ i ≤ n− 1
(1)

Given a new detection score, a probability is estimated by linear interpolation of the pi. We plot

the learned mapping from detection scores to probabilities in Fig. S7A.

We made a number of additional design choices while training and running this car detector

in practice. First, we only detected cars that are 50 pixels or greater in width and height. The

output of our detector is fed into the input of our car classifier. Thus, detected cars need to have

sufficient resolution and detail to enable the classifier to differentiate between 2,657 categories of

automobiles. Similarly, we trained our detector using cars with greater than 50 pixels width and

height. Our DPM is trained on a subset of 13,105 bounding boxes, reducing training time from a

week (projected) to 15 hours. Using this subset instead of all ground truth bounding boxes results
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in negligible changes in accuracy.

We report numbers using a detection threshold of -1.5 (applied before the location prior). At test

time, after applying the location prior (which lowers detection decision values), we use a detection

threshold of -2.3. This reduces the average number of bounding boxes per image to be classified

from 7.9 to 1.5 while only degrading AP by 0.6 (66.1 to 65.5) and decreasing the probability mass of

all detections in an image from 0.477 to 0.462 (a 3% drop). Fig. S8 shows examples of car detections

using our model. Bounding boxes with cars have high estimated probabilities whereas the opposite

is true for those containing no cars. The AP of our final model (measured on the test set) is 65.7,

and its precision recall curve is visualized in Fig. S7B. To calculate chance performance we use a

uniform sample of bounding boxes greater than 50 pixels in width and height.

Car Classification Our pipeline, described in 10, classifies automobiles into one of 2,657 visually

distinct categories with an accuracy of 33.27%. We use a convolutional neural network 24 following

the architecture of 12 to categorize cars. CNNs, like other supervised machine learning methods,

perform best when trained on data from a similar distribution as the test data (in our case, Street

View images). However, the cost of annotating Street View photos makes it infeasible to collect

enough images to train our CNN only using this source. Thus, we used a combination of Street View

and the more plentiful product shot images as training data. We made a number of modifications

to the traditional CNN training procedure to better fit our setting.

First, taking inspiration from domain adaptation, we approximated the WEIGHTED method of

Daumé 25 by duplicating each Street View image 10 times during training. This roughly equalizes

the number of Street View and product shot images used for training, preventing the classifier from

overfitting on product shot images.

Another significant difference between product shot and Street View images is image resolution:

15



cars in product shot images occupy a much larger number of pixels in the image. To compensate

for this difference, we first measured the distribution of bounding box resolutions in Street View

images used for training. Then, during the training procedure, we dynamically downsized each

input image according to this distribution before rescaling it to fit the input dimensions of the

CNN. Resolutions are parameterized by the geometric mean of the bounding box width and height,

and the probability distribution is given as a histogram over 35 different such resolutions. The

largest resolution is 256, which is the input resolution of the CNN.

One further challenge while classifying Street View images is that our input consists of noisy

detection bounding boxes. This stands in contrast to what would otherwise be the default for

training a classifier – ground truth bounding boxes that are tight around each car. To tackle this

challenge, we first measured the distribution of the intersection over union (IOU) overlap between

bounding boxes produced by our car detector and ground truth boxes in the validation data. Then,

we randomly sampled the Street View image region input into the CNN according to this IOU

distribution. This simulates detections as inputs to the CNN and ensures that the classifier is

trained with similar images to those we encounter during testing.

At test time, we input each detected bounding box into the CNN and obtain softmax probabilities

for each car category through a single forward pass. In practice, we only keep the top 20 predictions,

since storing a full 2, 657-dimensional floating point vector for each bounding box is prohibitively

expensive in terms of storage. On average, these top 20 predictions account for 85.5% of the softmax

layer activations’ probability mass. We also note that, after extensive code optimization to make

this classification step as fast as possible, we are primarily limited by the time spent reading images

from disk, especially when using multiple GPUs to perform classification. At the most fine-grained

level, classifying into one of 2, 657 classes, we achieve a surprisingly high accuracy of 33.27%. We
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classify the make and model of the car with 66.38% and 51.83% accuracy respectively. And we

determine whether it was manufactured in or outside of the U.S. with 87.71% accuracy.

We show confusion matrices for classifying the make, model, body type and manufacturing

country of the car (Fig. S9A,B,C,D). Body type misclassifications tend to occur among similar

categories. For example, the most frequent misclassification for “coupe” is “sedan”, and the most

frequent misclassification for trucks with a regular cab is trucks with an extended cab. On the other

hand, there are no two makes (such as Honda and Mercedes-Benz) that are more visually similar

than others. Thus, when a car’s make is misclassified, it is mostly to a more popular make. The

same is true for the manufacturing country. For instance, most errors at the country level occur

by misclassifying the manufacturing country as either “Japan” or “USA”, the two most popular

countries. Due to the large number of classes, the only clear pattern in the model-level confusion

matrix is a strong diagonal, indicative of our correct predictions.

Demographic Estimation In all of our demographic estimations we use the following set of 88 car-

related attributes: The average number of detected cars per image; Average car price; Miles per

gallon (city and highway); Percent of total cars that are hybrids; Percent of total cars that are

electric; Percent of total cars that are from each of seven countries; Percent of total cars that are

foreign (not from the USA); Percent of total cars from each of 11 body types; Percent of total cars

whose year (selected as the minimum of possible year values for the car) fall within each of five year

ranges: 1990-1994, 1995-1999, 2000-2004, 2005-2009, and 2010-2014; Percent of total cars whose

make is each of 58 makes in our dataset.

Socioeconomic data was obtained from the American Community Survey (ACS) 3, and was

collected between 2008-2012. See Supporting Information for more detail on ground truth data

used in our analysis (e.g. census codes). Data for the 2008 U.S. presidential election was provided
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to us by the authors of 26 and consists of precinct-level vote counts for Barack Obama and John

McCain. For all of our analyses, we ignore votes cast for any other person, i.e. the count of total

votes is determined solely by votes for Obama and McCain.

To perform our experiments, we partitioned the zip codes, precincts and cities in our dataset

into training and test sets as discussed in the main text, training a model on the training set and

predicting on the test set. We used a ridge regression model for income and voter affiliation esti-

mation. For race and education estimation we used logistic regression to utilize structure inherent

in the data. Specifically, for each region, summing the percentage of people with each of the 5

possible educational backgrounds should yield 100%. Similarly, summing the percentage of people

from each race in a particular location should result in 100%. In all cases we trained 5 models

using 5-fold cross validation to select the regularization parameter. Our final model is the average

of the 5 trained models. We normalize the features to have zero mean and unit standard deviation

(parameters determined on the training set). We also clip predictions to stay within the range

of the training data, preventing our estimates from having extreme values. In all experiments, we

restricted the regions of interest to be ones with a population of at least 500 and at least 50 detected

cars.

We compute the probability of voting Democrat/Republican conditioned on being in a city with

more pickup trucks than sedans as follows. Let r be the ratio of pickup trucks to sedans. We would

like to estimate P (Democrat|r > 1) and P (Republican|r < 1).

P (Democrat|r > 1) = P (Democrat, r > 1)
P (r > 1) (2)

P (Republican|r < 1) = P (Republican, r < 1)
P (r < 1) (3)

We estimate P (Democrat, r > 1), P (Republican, r < 1), P (r > 1) and P (r < 1) as follows. Let

Sd = {ci} be the set of cities with more votes for Barack Obama than Mitt Romney. Let Ss = {cj}
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be the set of cities with more sedans than pickup trucks. Let ns be the number of elements in Ss and

let nds be the number of elements in Sd ∩Ss. Similarly, let Sp be the set of cities with more pickup

trucks than sedans, Sr the set of cities with more votes for Mitt Romney than Barack Obama, and

nrp the number of elements in Sr ∩ Sp. Finally, let C be the number of cities in our test set.

P (Democrat, r > 1) ≈ nds

C
(4)

P (Republican, r < 1) ≈ nrp

C
(5)

P (r > 1) ≈ ns

C
(6)

P (r < 1) ≈ np

C
(7)

Using these estimates, we calculate P (Democrat|r > 1) and P (Republican|r < 1) according to

equations 2 and 3.
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Supporting Information

Image Data

In this section, we provide additional detail on the methodology used to acquire annotated image

data for our study. This data is required for two steps: to train computer vision models that

detect and classify cars, and to apply these models on Street View images of cities of interest. This

section proceeds by detailing how we obtained a comprehensive list of car categories, collected a

large number of “product shot” images used to train our car classifier, gathered 50 million Street

View images used in our analysis, and annotated a subset for training and verifying our model. We

conclude with a complete description of the acquired metadata for each car category.

Car Categories The first step in assembling a dataset of annotated car images is grouping cars

into sets of visually indistinguishable classes. For example, while a 2003 Honda Accord coupe ex

and a 2005 Honda Accord coupe ls special edition are manufactured in different years and have

different trims (ex vs ls special edition), their exteriors look identical. Thus, these two cars should

be grouped into the same class. Ideally, the set of classes would contain every type of car in common

use. 27 presents a workflow to perform this grouping at minimal cost.

We first retrieved an initial list of 15,213 car types from the car website Edmunds.com, collected

in August 2012. This forms a generally complete list of all cars commonly used in the United States

that were produced from 1990 onward. Throughout this document we use the term “car” to refer

to all types of automobiles with four wheels, including sedans, coupes, trucks, vans, SUVs, etc., but

not including e.g. semi-trucks or buses.

As a first step toward grouping these categories into a smaller number of visually distinct classes,

used Amazon Mechanical Turk (AMT) to determine whether certain pairs of the 15k car types were
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distinguishable. Within each task we gave six pairs of categories and the user was prompted to

determine 1) if the two classes had any visual differences, and 2) if they were different, on which

parts they differed. Within each task we had two pairs for which we already knew the correct

answer (as determined by hand), and we required that each user on AMT get the answer for those

pairs correct in order to count their response. Photos for this task were acquired from the handful

of example images that Edmunds.com provides. The authors cleaned up the data by hand, resulting

in 3,141 categories of cars, with extremely subtle differences between these fine-grained categories.

Product Shot Images After assembling a list of categories consisting of visually indistinguishable

sets of cars, we collected training images for each class. These are annotated images containing the

car of interest. A commonly used method in the computer vision community is to perform web

image searches for each category and cleanup the query images by hand to ensure that they contain

the category of interest 28. However, the large number of classes in our dataset makes it infeasible

to manually perform this task.

In order to collect training data in a scalable manner, we leveraged e-commerce websites. We

crawled images from cars.com and craigslist.org, two sites where users are heavily incentivized to

list the exact type of car they are selling. While these users are not necessarily car experts, they

have detailed knowledge about their own car. In the case of cars.com, car categories are represented

in a very structured format. Thus, after establishing a mapping between our categories and their

format, we were able to simply scrape images for each category. For craigslist.org, we scraped posts

from the “cars+trucks” listings of a variety of U.S. regions, and parsed the post titles to determine

which of our categories the posts belonged to. Since these images are from websites with the purpose

of selling cars, we call them “product shot” images.

Some product shot images show the car from an extremely close-up angle. Others only depict
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the interior of the car. Since our purpose is to recognize cars in Google Street View images, our

training set should have cars from view points that can appear in Street View. Thus, we filtered

out images which do not contain one central automobile, with its exterior depicted in its entirety.

Since this task is relatively simple, we crowdsourced it via AMT, using 29 for quality control.

In the final annotation step, we collected a bounding box (an axis-aligned rectangle tightly en-

closing the object of interest) around the car in each image. This ensures that our car classifier is

trained using visual information only from the car itself and not extraneous background. Bounding

boxes were collected using the labeling methodology and UI of 30, but without the step for deter-

mining if there is more than one car in the image. That step is not necessary because the output

of the previous AMT task ensures that each image contains exactly one prominent car.

Since some types of cars have many more images than others, we stopped annotating images for

each category after collecting 200 labeled photos. Our goal is to build a model that can recognize as

many types of cars as possible. Given our limited budget, it is more important to collect annotations

for categories with few labeled images than for those with many annotated photos.

In the final step, we removed categories that do not have at least three disparate sources of data

per class. We define one source of data as one post on any of the websites we used. This process

resulted in our final dataset consisting of 2,657 car categories.

Street View Images This section outlines our methodology for collecting approximately 50 million

Google Street View images and annotating a subset of them to train our car detector and classifier.

The process includes selecting GPS (latitude, longitude) points of interest, collecting images for each

of these points, enclosing cars in a subset of these images with bounding boxes, and annotating the

type of car contained in each box. The final step is performed by car experts.
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Selecting GPS Points Before gathering Google Street View images, we first have to determine

which geographical (latitude, longitude) points we want to collect photos for. We call each latitude,

longitude pair a GPS point. First, we select 200 cities for our analysis. These are the two largest

cities in each state and the next 100 largest cities in the United States as determined by population

(see Tab. S1 for a complete list). For each city, we sample potential points of interest within a

square grid of length 20km, centered on one point known to lie within the city. There is a 25 meter

spacing between points. We reverse geocode each of these points to determine whether they lie

within the city of interest and how far away they are to the nearest road. We keep all points within

12.5 meters of the nearest road. This process did not provide full coverage for a handful of cities.

Thus, we augmented these points with GPS samples from road data provided by the U.S. Census

Bureau 31.

Sampling Images from Street View For each GPS point, we attempt to sample 6 images from

Google Street View, one for each of 6 different camera rotations. This was done via browser emu-

lation and requires only the latitude and longitude of each point. However, we cannot immediately

use photos retrieved with this process as they appear warped: an equirectangular projection is ap-

plied to images in a spherical panorama. We apply the reverse transformation before all subsequent

tasks using the images.

Annotations on Amazon Mechanical Turk While our product shot images can be used to train

a car classifier, we cannot utilize them to train a car detector: a model that learns to localize all

the cars in an image. This is because all of our product shot images include only one prominently

featured car in each image.

Using the system of 30, we collected bounding box annotations in a subset of our Street View
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images. To increase the efficiency of this process, we first filtered out all images containing either

zero or more than 10 cars via AMT, using the same interface and pipeline described in the section

pertaining to product shot images. A randomly selected subset of 399,331 Street View images were

annotated in this manner. We found that 26.6% of images were annotated as having no visible cars

and 12.4% had more than 10 cars. The distribution of the number of cars in the remaining images

is shown in Fig. S6A.

Fig. S6B plots bounding box size versus location. Cars located closer to the bottom of the image

tend to occupy more space than those near the top. This agrees with the intuition that cars lower

in the image are closer to the camera and therefore appear larger. Similarly, Fig. S6C shows a

heatmap of bounding box location for cars in Street View. Most automobiles are located near the

horizon line because that part of the image occupies more 3D space, i.e., more space in the real

world. There is a sharp dropoff in the distribution of cars above the horizon line.

Expert Class Annotations To learn to recognize automobiles in Street View images, a classifier

needs to be trained with cars from these images. To this end, we labeled a subset of the bounding

boxes from Street View images with the types of cars contained in them. This annotated data also

enables us to quantitatively evaluate how well our classifier works. In contrast to product shot

images, we do not know the types of cars contained in Street View photos. Therefore, we hired

expert car annotators to label these images. Experts were primarily solicited via Craigslist ads.

Those who were interested in performing our task were first asked to annotate cars in Street View

images for one hour, and only those who could annotate at a speed of 1 car per minute and a

precision of at least 80% were allowed to annotate further. 110 expert human annotators worked

for a total of approximately two thousand hours to label our images.

Very small images typically do not contain enough visual information to discriminate fine levels

28



of detail. Thus, annotators were only shown cars in bounding boxes whose height exceeded 50 pixels.

32.89% of bounding boxes in our dataset fulfill this criteria. The annotation task itself proceeded

hierarchically: Fig. S10 shows the user interface for the task. Given a Street View bounding box,

annotators were first asked to select the make of the car (Fig. S10(A)). They were then presented

with a list of body types for the chosen make (Fig. S10(B)). After selecting the right body type,

experts were shown a list of options for the car model, and finally, the trims and years associated

with each model.

Since differences between categories can be extremely subtle at that final level, we also provided

example images from each trim and year grouping for the annotator’s benefit (Fig. S10(C)). At any

point in the process, the annotator could declare that he or she did not have enough information

to make a selection. Thus, each label at this finest level of detail represents a confident selection

by a car expert. We collected a total of 69,562 car category annotations in this manner.

Car Metadata In addition to the images, category labels, and bounding boxes, we also have meta-

data pertaining to each class, listed below.

• Make: The make of the car, of 58 possible makes. The makes we consider are: Acura, AM

General, Aston Martin, Audi, Bentley, BMW, Buick, Cadillac, Chevrolet, Chrysler, Dae-

woo, Dodge, Eagle, Ferrari, Fiat, Fisker, Ford, Geo, GMC, Honda, Hummer, Hyundai, In-

finiti, Isuzu, Jaguar, Jeep, Kia, Lamborghini, Land Rover, Lexus, Lincoln, Lotus, Maserati,

Maybach, Mazda, McLaren, Mercedes-Benz, Mercury, Mini, Mitsubishi, Nissan, Oldsmobile,

Panoz, Plymouth, Pontiac, Porsche, Ram, Rolls-Royce, Saab, Saturn, Scion, Smart, Subaru,

Suzuki, Tesla, Toyota, Volkswagen, and Volvo.

• Model: The model of the car, of 777 possible models.
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• Year: The manufacturing year of the automobile. Since cars might not change appearance

over a small number of years, this is typically listed as a range of years. The minimum year

in our dataset is 1990, and the maximum year is 2014.

• Body Type: The body type of the car. The 11 possible values are: convertible, coupe,

hatchback, minivan, sedan, SUV, truck (regular-sized cab), truck (extended cab), truck (crew

cab), wagon, and van.

• Country: The manufacturing country of the automobile. The 7 possible countries are: Eng-

land, Germany, Italy, Japan, South Korea, Sweden, and USA.

• Highway MPG: The typical miles per gallon of the car when driven on highways. If a class

contains cars with multiple years, it is annotated with the highway MPG of the oldest car in

the group.

• City MPG: The typical miles per gallon of the car when driven on non-highway streets.

• Price: the price of the car in 2012.

This metadata was acquired via Edmunds.com in August 2012, with some missing data (a handful

of car prices) filled in by car experts afterward. In cases where a class consists of multiple visually

indistinguishable types of cars, it is annotated with the metadata of the oldest car in the set.

Dataset Summary Tab. S3 provides a summary of the annotations collected for both product shot

and Street View images, which we split into training (50%), validation (10%), and test (40%) sets

for use in training our car detector and classifier.
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Demographic Data

Income Data for median household income was obtained from the American Community Survey

(ACS) 3, and was collected between 2008-2012. We used census variable B19013_001E, “Median

household income in the past 12 months (in 2013 inflation-adjusted dollars)”.

Education Education data was also obtained from the ACS 3. Education levels are split into the

following mutually exclusive categories (census codes in parentheses):

• Less than high school graduate (B06009_002E)

• High school graduate (includes equivalency) (B06009_003E)

• Some college or associate’s degree (B06009_004E)

• Bachelor’s degree (B06009_005E)

• Graduate or professional degree (B06009_006E)

Race Racial demographic data was also obtained from the ACS 3, and corresponds to census

codes B02001_002E (“White alone”), B02001_003E (“Black or African American alone”), and

B02001_005E (“Asian alone”).

Voting Data for the 2008 U.S. presidential election was provided to us by the authors of 26 and

consists of precinct-level vote counts for Barack Obama and John McCain. For all of our analyses,

we ignore votes cast for any other person, i.e. the count of total votes is determined solely by votes

for Obama and McCain.

Obama received greater than 50% of the votes in most of the precincts in our dataset. This can

partially be attributed to the fact that he won the popular vote in the 2008 election. Precincts
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in our dataset are also located in major cities which favor candidates from the Democratic party.

Interestingly, Obama received an extremely high percentage (≥ 95%) of the votes in many precincts

in our dataset. A large portion of these precincts have high concentrations of African Americans,

who overwhelmingly voted for him during the 2008 election.
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a b c

Confusion matrixes show the accuracy with which we classify various car attributes. Fig. S1. Confusion matrices show the accuracy with which we classify various car attributes such as type of vehicle in a, whether or not it is domestic

in b, and its price in c.

Fig. S2. Bar plots showing the top 10 car features with high positive weights in our race estimation model.
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Fig. S3. Scatter plots of ground truth income and race values vs our estimations. Also shown on each plot is the line y=x which corresponds to a perfect

predictor.
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Fig. S4. Scatter plots of ground truth data vs our estimations of educational attainment. Also shown on each plot is the line y=x which corresponds to

a perfect predictor.
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Fig. S5. Scatter plots of ground truth data showing the percentage of people with a graduate school degree vs our estimations, and the percentage of

people who voted for Barack Obama in the 2008 presidential election vs our estimations. Also shown on each plot is the line y=x which corresponds to

a perfect predictor.
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Fig. S6. (A) Histogram of the number of cars annotated in the Street View images, represented by the number of annotated bounding boxes in each

image. Images included in these numbers are those images annotated as containing more than zero and less than 11 cars. (B) Bounding box position

vs log(area). Each point corresponds to a single bounding box in our training set of Street View images, and the color corresponds to the log of the

number of pixels in the bounding box. (C) Bounding box position vs frequency. The color of each pixel indicates the number of bounding boxes in the

training set which overlap with that pixel.
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Fig. S7. A. The transformation from detection scores to the probability of the detection being correct (i.e. probability of correctly detecting a car), learned

with isotonic regression on the validation set. B. Precision/recall curve for our final detection model on the test set.
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Fig. S8. Example detections with our model on our testing set. Shown in the box around each detection is our estimated probability of the detection

having intersection over union greater than 0.5, i.e. counted as correct during detection evaluation.
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A B

C D

Fig. S9. Confusion matricies of predictions. The entry in row i and column j indicates how many times ground truth attribute i was classified as attribute

j. The attributes are A. the make of the car, B. the manufacturing country of the car, C. the model of the car, and D. the body type of the car.
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A B

C

Fig. S10. Screenshots of the user interface for hierarchically annotating Street View images with car categories. A. The expert is first asked to identify

the make. B. The next step in the task is to identify the body type of the car which is called “submodel” in the task. C. Once the body type is identified

we provide a list of classes for the selected make and body type. Example images of each class are also shown to aid the user in identification.

39



City # Im. City # Im. City # Im. City # Im.

Birmingham, AL 484,818 Santa Ana, CA 90,030 Portland, ME 86,874 Salem, OR 102,174
Huntsville, AL 100,410 Santa Clarita, CA 83,298 Baltimore, MD 570,360 Philadelphia, PA 244,194
Mobile, AL 45,114 Santa Rosa, CA 243,324 Frederick, MD 182,388 Pittsburgh, PA 682,728
Montgomery, AL 45,084 Stockton, CA 343,662 Boston, MA 195,864 Providence, RI 130,104
Anchorage, AK 59,484 Sunnyvale, CA 66,318 Springfield, MA 116,928 Warwick, RI 172,092
Fairbanks, AK 42,384 Torrance, CA 136,260 Worcester, MA 197,424 Charleston, SC 56,604
Chandler, AZ 309,414 Aurora, CO 143,508 Detroit, MI 287,736 Columbia, SC 334,914
Gilbert, AZ 175,242 Colorado Springs, CO 492,222 Grand Rapids, MI 202,266 Rapid City, SD 30,954
Glendale, AZ 160,146 Denver, CO 306,990 Minneapolis, MN 654,270 Sioux Falls, SD 74,640
Mesa, AZ 283,620 Fort Collins, CO 307,056 Saint Paul, MN 164,034 Chattanooga, TN 284,214
Peoria, AZ 135,132 Bridgeport, CT 154,092 Gulfport, MS 14,898 Knoxville, TN 457,434
Phoenix, AZ 623,892 New Haven, CT 62,394 Jackson, MS 71,298 Memphis, TN 97,572
Scottsdale, AZ 138,120 Dover, DE 22,134 Kansas City, MO 577,830 Nashville, TN 554,118
Tempe, AZ 302,958 Wilmington, DE 80,754 Springfield, MO 395,502 Amarillo, TX 85,380
Tucson, AZ 634,986 Washington, DC 375,258 St. Louis, MO 426,942 Arlington, TX 509,406
Fort Smith, AR 205,512 Cape Coral, FL 309,102 Billings, MT 54,768 Austin, TX 211,530
Little Rock, AR 398,094 Fort Lauderdale, FL 279,300 Missoula, MT 157,254 Brownsville, TX 284,826
Anaheim, CA 133,098 Hialeah, FL 143,928 Lincoln, NE 444,306 Corpus Christi, TX 61,434
Bakersfield, CA 521,112 Jacksonville, FL 770,016 Omaha, NE 322,602 Dallas, TX 663,006
Chula Vista, CA 189,204 Miami, FL 310,692 Henderson, NV 259,416 El Paso, TX 205,500
Corona, CA 238,932 Orlando, FL 582,018 Las Vegas, NV 521,172 Fort Worth, TX 677,214
Elk Grove, CA 306,600 Pembroke Pines, FL 71,274 North Las Vegas, NV 197,394 Garland, TX 226,140
Escondido, CA 206,550 Port St. Lucie, FL 62,292 Reno, NV 104,328 Grand Prairie, TX 210,198
Fontana, CA 167,604 Saint Petersburg, FL 83,442 Manchester, NH 131,682 Houston, TX 337,830
Fremont, CA 232,608 Tallahassee, FL 419,220 Nashua, NH 139,890 Irving, TX 179,382
Fresno, CA 135,210 Tampa, FL 610,770 Jersey City, NJ 78,036 Laredo, TX 259,878
Garden Grove, CA 77,706 Atlanta, GA 315,336 Newark, NJ 129,948 Lubbock, TX 500,760
Glendale, CA 77,316 Augusta, GA 239,994 Albuquerque, NM 73,746 Pasadena, TX 29,700
Hayward, CA 207,744 Columbus, GA 54,246 Las Cruces, NM 82,098 Plano, TX 330,186
Huntington Beach, CA 101,574 Hilo, HI 14,406 Buffalo, NY 376,806 San Antonio, TX 1,034,358
Irvine, CA 183,474 Honolulu, HI 209,010 New York, NY 508,860 Salt Lake City, UT 272,190
Lancaster, CA 110,550 Boise, ID 42,438 Rochester, NY 391,458 West Valley City, UT 69,432
Long Beach, CA 265,806 Nampa, ID 231,318 Yonkers, NY 27,618 Burlington, VT 31,998
Los Angeles, CA 554,106 Aurora, IL 203,256 Charlotte, NC 111,510 Essex, VT 16,056
Modesto, CA 32,406 Chicago, IL 791,298 Durham, NC 359,592 Alexandria, VA 69,924
Moreno Valley, CA 180,516 Joliet, IL 118,116 Fayetteville, NC 292,296 Chesapeake, VA 38,568
Oakland, CA 326,208 Rockford, IL 372,156 Greensboro, NC 80,730 Newport News, VA 17,862
Oceanside, CA 129,384 Fort Wayne, IN 99,672 Raleigh, NC 409,776 Norfolk, VA 56,688
Ontario, CA 142,230 Indianapolis, IN 468,780 Winston-Salem, NC 457,314 Richmond, VA 504,138
Oxnard, CA 154,074 Cedar Rapids, IA 257,178 Bismarck, ND 156,912 Virginia Beach, VA 40,698
Palmdale, CA 164,064 Des Moines, IA 123,678 Fargo, ND 202,422 Seattle, WA 529,392
Pomona, CA 153,798 Kansas City, KS 577,830 Akron, OH 404,376 Spokane, WA 381,684
Rancho Cucamonga, CA 88,734 Overland Park, KS 9,252 Cincinnati, OH 511,842 Tacoma, WA 331,338
Riverside, CA 446,412 Wichita, KS 569,658 Cleveland, OH 416,142 Vancouver, WA 292,560
Sacramento, CA 525,756 Lexington, KY 345,516 Columbus, OH 568,776 Charleston, WV 38,628
Salinas, CA 175,530 Louisville, KY 419,544 Toledo, OH 51,444 Huntington, WV 42,144
San Bernardino, CA 124,002 Baton Rouge, LA 65,592 Oklahoma City, OK 687,234 Madison, WI 218,580
San Diego, CA 472,872 New Orleans, LA 456,042 Tulsa, OK 541,458 Milwaukee, WI 446,172
San Francisco, CA 215,298 Shreveport, LA 100,662 Eugene, OR 108,582 Casper, WY 43,542
San Jose, CA 274,848 Lewiston, ME 50,562 Portland, OR 548,334 Cheyenne, WY 211,668

Table S1. List of cities in our dataset and the number of Street View images we collected for each city.
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Comp. Parts AP Time

1 0 52.3 2.27

1 4 63.2 3.48

1 8 64.2 4.84

3 0 62.9 6.48

3 4 66.7 12.20

3 8 68.4 16.47

5 0 64.8 10.25

5 4 67.3 16.33

5 8 68.7 22.07

6 0 65.2 10.48

8 0 66.0 11.17

Table S2. Average Precision (AP) on the Street View validation set for various DPM configurations. Time is measured in seconds per image. Comp. is

the number of DPM components, and Parts indicates the number of parts in the model.

Attribute Training Validation Test

Street View Images 199,666 39,933 159,732

Product Shot Images 313,099 - -

Total Images 512,765 39,933 159,732

Street View BBoxes 34,712 6,915 27,865

Product Shot BBoxes 313,099 - -

Total BBoxes 347,811 6,915 27,865

Table S3. Dataset statistics for our training, validation, and test splits. “BBox” is shorthand for Bounding Box. Product shot bounding boxes and images

are from craigslist.com, cars.com and edmunds.com.
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