11 min read

Abundance Insider: August 30th, 2019

By Peter H. Diamandis on Aug 31, 2019

In this week's Abundance Insider: Stratospheric drones, a new space elevator design, and CRISPR-controlled materials for drug delivery.

P.S. Send any tips to our team by clicking here, and send your friends and family to this link to subscribe to Abundance Insider.

P.P.S. Want to learn more about exponential technologies and home in on your MTP/ Moonshot? Abundance Digital, a Singularity University Program, includes 100+ hours of coursework and video archives for entrepreneurs like you. Keep up to date on exponential news and get feedback on your boldest ideas from an experienced, supportive community. Click here to learn more and sign up.

Cambridge scientists reverse aging process in rat brain stem cells.

What it is: A team of researchers at the University of Cambridge’s Wellcome-MRC Cambridge Stem Cell Institute has discovered a critical component of the extracellular environment’s effect on our brain’s aging process. As a result, they’ve now uncovered a potential mechanism for reversing loss of function in brain stem cells, typically due to stiffening. The researchers first studied the function of oligodendrocyte progenitor cells (OPCs) — a type of stem cell critical for normal brain function and myelin reformation — by placing the OPCs of older mice into the far softer brain tissue of younger animals. Surprisingly, the older cells became rejuvenated, behaving more similarly to younger counterparts. The team then took its research a step further by removing Piezo1, a protein on the cell’s surface that detects whether its environment is soft or stiff. Once Piezo1 was removed, the OPCs were essentially tricked into believing their environment was soft, subsequently resuming normal, healthy function.

Why it’s important: In the near term, this discovery holds extraordinary potential to alleviate the pain of patients with Multiple Sclerosis, who suffer loss of function in both the brain and other parts of the nervous system. More broadly, however, this study demonstrates a key link between extracellular environment and the human aging process, opening new avenues for research and therapeutic applications. A major feat for longevity research, this and similar discoveries make aging research far more relevant to the well-funded study of other diseases, helping spur new funding for our extension of the human healthspan. | Share on Facebook.

Drone Ambitions Soar to the Stratosphere.

What it is: Airbus, Boeing, and SoftBank are now developing stratospheric autonomous drones, capable of flying at (and even above) 60,000 feet. Intended to fly for months without intervention, the drones could deliver imaging and even internet services from above, generating a new market for commercial and military customers. Already, Airbus’s current iteration of its solar-powered Zephyr UAV weighs just 175 pounds yet touts a wingspan of 75 feet. Taking after this lightweight model, the stratospheric drones would be able to recharge batteries during the day to stay aloft at night. While seemingly a competitor to satellite connectivity providers like Starlink, OneWeb or TeleSat, these drones could additionally improve the link between ground and space satellites, according to the European Space Agency. This, in turn, would make upper stratospheric and space efforts far more complementary than competitive.

Why it’s important: According to research firm NSR, high-altitude aircraft (including stratospheric drones, balloons and airships) could generate $1.7 billion in revenue over the next decade. Despite the challenges of building aircraft light enough to fly above 60,000 feet, yet capable of withstanding turbulence at lower altitudes, there are already over 40 development programs currently under way. As both R&D and private sector investment continue on the rise, we will soon bring connectivity to upwards of 4 billion people currently without access to the web— no undersea cables or capital-intensive trenches needed. Last-mile connectivity costs will plunge, and anyone anywhere will be able to leverage the connected globe. | Share on Facebook.

Double’s new telepresence robot now drives you around like you’re a Sim.

What it is: In a new feat for telepresence robotics, Double has announced the third generation of its flagship telecommuting device. The company’s latest model, “Double 3” has vastly improved upon previous hardware, no longer consisting of a scooter-like mount topped with (separately purchased) iPad. Embedding a screen for remote interaction with the robot’s environment, Double 3 is additionally equipped with a suite of cameras and 3D sensors, enabling seamless self-driving and augmented reality integration. No longer needing to manually steer Double around the office, users can simply place a “pin” on their target location and the robot will automatically go there, avoiding all obstacles and people along the way. Further geared with high-resolution Pan-Tilt-Zoom cameras, the device grants remote workers anywhere the novel ability to collaborate with colleagues in a hyper-efficient, life-like way.

Why it’s important: In just the past 5 years, the number of employers that allow working from home has grown 40 percent. Yet beyond the benefits of no commute, a recent survey revealed that 86 percent of employees find they are more productive at home than in an office. Yet Double and similar telepresence robots provide teams the best of both worlds, offering the convenience of working from home, while still maintaining the efficiency of spontaneous “water cooler” conversations and in-person meetings. As investment in sensors, AI, and AR surges year-to-year, the cost of producing telepresence hardware will continue to plummet. An indication of the technology’s growing commercialization, Suitable Technologies (Double’s main competitor) was recently acquired by Blue Ocean Robotics, as the company continues deploying its Beam robot. Amplifying the experience of decentralized teams, Double’s latest iteration could permeate a range of industries, from elder care to surveillance to supply chain management. How might your business leverage telepresence robotics in a growing decentralized workforce? | Share on Facebook.

Wildfire science: computer models, drones and laser scanning help fan the flames and prevent widespread devastation.

What it is: Utah University atmospheric scientist Adam Kochanski and a team of researchers are now refining a computer model with new data to predict how fires will spread and what weather events will follow in their wake. Initiating a “prescribed fire” — a controlled fire typically intended for habitat restoration in forest regions — the team used numerous infrared camera-fitted drones, laser scanning, and sensors to collect data while Kochanski tested his predictive model’s forecasts. While generated data is still being processed, the experiment is contributing to ‘coupled fire-atmosphere models,’ which leverage data to determine how wildfires influence local weather conditions, and the interaction of the two. Yet already, Kochanski’s model proved remarkably predictive of the experimental fire’s actual behavior.

Why it’s important: As wildfires grow ever more untamable and regions like the Amazon suffer detrimental losses, high-accuracy predictive models are more vital than ever before. Just in the last 10 decade, wildfires have decimated between 16,000 and 40,000 square kilometers of land in the U.S. each year, resulting in financial losses of US$5 billion. Paired with robust networks of sensors and autonomous drone fleets, computer models that incorporate weather conditions in AI forest fire mapping could help us to stem early fires before they gain momentum, saving forests, lives, and entire habitats. |Share on Facebook.

These researchers want to run a cable from the Earth to the Moon.

What it is: Space elevators have remained a science fiction moonshot since the Space Race of the 1960s. Building them would require cable material far stronger and lighter than any material currently discovered. However, in a newly published paper, researchers from Columbia and Cambridge universities describe Spaceline, a promising cable design made from known materials that could run from the surface of the Moon to geostationary orbit (approximately 36,000 kilometers above ground). Given that the elevator would not attach to Earth’s crust, the design eliminates numerous past engineering challenges, as rockets would only need to reach Spaceline’s endpoint, dock on the elevator, and be pulled to the Lunar surface.

Why it’s important: Rocketing into space (particularly with heavy cargo) is exorbitantly expensive, costing between US$10-20 million per metric ton of weight. Finding alternative methods of exiting the Earth’s atmosphere is therefore crucial for our democratization of space travel and extraplanetary discovery. In success, Spaceline could significantly lower the cost and challenge of modern-day rocket launches, possibly even allowing future researchers to tether orbital telescopes and research institutions between the Earth and Moon. Made far more accessible given its use of existing materials, Spaceline may not only forge a faster path to private space travel, but could enable new space-based research to fundamentally shift the way we understand our universe and our species’ place within it. | Share on Facebook.

Gene Editing Transforms Gel into Shape-Shifting Smart Material.

What it is: We often think of CRISPR in the context of genetically modified organisms or treatment of genetic diseases. Yet a team of researchers led by MIT bioengineer James Collins now has a new application for the gene-editing tool: smart materials that can shape-shift on command. Working with water-filled polymers held together by DNA strands called DNA hydrogels, the team used DNA-snipping enzyme Cas12a to alter the properties of these polymers. Programmed to recognize a specific DNA sequence and cut the targeted strand, Cas12a is now being used to build a number of CRISPR-controlled hydrogels that can change shape or dissolve completely to release a payload. Having demonstrated effectiveness, the team has even designed these hydrogels to release enzymes, drugs and human cells in response to programmed stimuli.

Why it’s important: Smart sensors for targeted drug delivery within the body have long been a hot topic of discussion, poised to revolutionize medicine with personalized and preventive care. Yet this research team’s CRISPR-controlled hydrogels could soon make this vision a practical reality. As expressed by Collins, “We’re in the CRISPR age right now [...] It’s taken over biology and biotechnology. We’ve shown that it can make inroads into materials and bio-materials.” Enabling constant monitoring of internal conditions, shape-shifting hydrogels and similar CRISPR-controlled materials might one day be capable of surrounding an infection with antibiotics the minute it appears, or releasing cancer drugs as soon as tumors are detected. Fortifying our bodies with an internal line of defense, smart biomaterials are slated to vastly increase the human healthspan, revolutionizing healthcare and the way we treat disease. | Share on Facebook.

What is Abundance Insider?

This email is a briefing of the week's most compelling, abundance-enabling tech developments, curated by my team of entrepreneurs and technology scouts, including contributions from standout technology experts and innovators.

Want more conversations like this?

At Abundance 360, a Singularity University program, we teach the metatrends, implications and unfair advantages for entrepreneurs enabled by breakthroughs like those featured above. We're looking for CEOs and entrepreneurs who want to change the world. The program is highly selective. If you'd like to be considered, apply here

Abundance Digital, a Singularity University program, is an online educational portal and community of abundance-minded entrepreneurs. You’ll find weekly video updates from Peter, a curated newsfeed of exponential news, and a place to share your bold ideas. Click here to learn more and sign up.

Know someone who would benefit from getting Abundance Insider? Send them to this link to sign up.

Topics: Abundance Insider Space AI Artificial Intellegence IoT driverless autonomous vehicles self-driving cars physics computation
10 min read

Abundance Insider: August 23rd, 2019

By Peter H. Diamandis on Aug 23, 2019

In this week's Abundance Insider: Intel's new AI chip, Starship's college-based delivery bots, and a major breakthrough in determining protein structure.

P.S. Send any tips to our team by clicking here, and send your friends and family to this link to subscribe to Abundance Insider.

P.P.S. Want to learn more about exponential technologies and home in on your MTP/ Moonshot? Abundance Digital, a Singularity University Program, includes 100+ hours of coursework and video archives for entrepreneurs like you. Keep up to date on exponential news and get feedback on your boldest ideas from an experienced, supportive community. Click here to learn more and sign up.

Researchers’ 3D map of the brain’s response to words could be vital for next-gen language decoders.

What it is: Researchers at UC Berkeley have now created a 3D map of how the brain responds to words. To achieve this, the team monitored brain activity (vis-à-vis blood flow data) of nine volunteers as they both listened to and read stories from “The Moth Radio Hour” podcast. By reading stories one word at a time and subsequently listening to the same passages, participants generated new data revealing how various words spark activity in distinct regions of the brain. These results were then fed into a computer program that used natural-language processing to map thousands of words based on their relationship to one another. Ultimately, the team found that different classes of words (e.g. social terms like “husband,” “father,” and “daughter”) do indeed correlate to disparate physical regions in the brain, regardless of whether they are read or listened to.

Why it’s important: Discoveries in neuroscience are fundamental to both augmenting and treating the human brain. In terms of augmentation, our ability to map the physical regions in which different brain activities take place will vastly facilitate development of brain-computer interface technologies (think: Elon Musk’s recently showcased Neuralink, for instance). From a treatment standpoint, research that codifies isolated brain activity — particularly in language and communication — could help us to develop unprecedented new therapies for patients with reading and speech disabilities. | Share on Facebook.

These AR swimming goggles can display multiple performance metrics while you swim.

What it is: Sports tech startup Form has just released the first-ever augmented reality (AR)-enabled swim goggles, introducing seamless fitness tracking to the pool. Developed in partnership with Olympic swimmers, the goggles can reach a depth of up to 32 feet. Attached to the side of one lens, Form’s computer sits embedded in a small black box, enabling swimmers to display performance metrics in real time, from total distance and stroke count, to total calories and split time. Using accelerometer data, the goggles’ onboard processor can even detect stroke types, additionally noting when swimmers turn around or take a break. For greater versatility, the company used machine learning to train its software on data produced by swimmers of multiple levels.

Why it’s important: Whereas some AR players have adopted a broad approach to general-purpose AR eyewear (think: Google Glass), Form’s targeting of a highly specific use case allows its technology to benefit from structured environments and an abundance of well-defined data. Just as Microsoft refined its Hololens technology through early application in industrial training and military settings, Form’s sports tech focus might soon yield AR hardware applicable in a range of industries. What other niche applications lend themselves to near-term, practical AR, while generating hardware for a fully augmented world? | Share on Facebook.

Intel launches first artificial intelligence chip Springhill.

What it is: This week, Intel released the company’s first dedicated AI processor, designed for use in large data centers. Known as Springhill, or Nervana NNP-I, the chip is based on a modified 10-nanometer Ice Lake processor, making it ideal for high workloads without significant energy use. Now a principal component of Intel’s “AI everywhere” strategy, the Springhill chip is built for an AI process called inference. Implementing trained neural network models to deduce novel insights from data, inference is essential for computer vision, speech and image recognition, as well as language processing tasks.

Why it’s important: Already in use by companies like Facebook, Intel’s chip can help offload inference workloads from countless standard processors, allowing these latter components to focus far more on general compute tasks. As explained by the general manager of Intel’s AI products group, Naveen Rao, “In order to reach a future situation of ‘AI everywhere,’ we have to deal with huge amounts of data generated and make sure organizations are equipped with what they need to make effective use of the data and process them where they are collected.” Not only will Intel’s Springhill deployment help catalyze complex AI inference processes, but similar iterations could vastly improve the energy efficiency of today’s growing data centers. | Share on Facebook.

Thousands of autonomous delivery robots are about to descend on US college campuses.

What it is: Having just raised $40 million in its Series A round, autonomous robot delivery startup Starship Technologies is now targeting U.S. college campuses. In total, Starship’s self-driving delivery bots have traveled 350,000 miles, completing over 100,000 deliveries across 20 different countries. With extensive testing under its belt, the company plans to deploy thousands of its all-electric, six-wheeled bots for college food deliveries over the next two years. Already in action at George Mason University and Northern Arizona University, the robots can carry up to 20 pounds of cargo and make deliveries within a three-to-four-mile radius.

Why it’s important: Online grocery shopping is predicted to surge up to fivefold over the next ten years, and American consumers are expected to spend upwards of $100 billion on food-at-home items by 2025. While today’s human-conducted delivery services (think: Postmates and DoorDash) are on the rise, these non-automated options remain heavily subsidized, as labor costs far exceed those of roboticized alternatives. By first targeting college campuses, companies like Starship can benefit from well-defined, easily navigable environments (not to mention an abundance of tech-savvy, young buyers) while building out an expanded business model for urban integration. | Share on Facebook.

Scientists extract hydrogen gas from oil and bitumen, giving potential pollution-free energy.

What it is: Clean energy startup Proton Technologies is now cracking the code of emission-less, pollution-free hydrogen gas. Hydrocarbons (like those in crude oil and natural gas) react with oxygen via combustion (or respiration) to produce energy plus carbon dioxide and water. Hydrogen gas, on the other hand, reacts with oxygen to produce solely energy and water. To avoid burning hydrocarbons above ground (and thereby release carbon into the atmosphere), Proton Technologies has now developed a system of converting hydrocarbons into hydrogen while still trapped in oil fields underground. By injecting oxygen into oil wells to combust the trapped hydrocarbons, Proton can generate enough heat in the process to produce hydrogen gas. This process leaves carbon sources trapped beneath the Earth’s surface in the form of carbon dioxide, carbon monoxide, methane, and other gases, while removing only hydrogen gas.

Why it’s important: An extraordinary range of new technologies is allowing us to fundamentally rethink our global energy economy. New game changers, from emission-free hydrogen gas to direct air capture (DAC), hold vast potential to decimate energy costs, while providing an unprecedented abundance of clean energy. Solving one of today’s most existentially critical challenges requires a robust energy production strategy bolstered by first principles thinking. Peter’s most recent blog series heavily explores the potential of alternative energy technologies, spanning nuclear, solar, and direct air capture-derived fuels. Could the next piece of this complex energy puzzle involve hydrogen gas? | Share on Facebook.

Measuring the shape of proteins just got easier thanks to mathematics.

What it is: A research team led by Yale chemist Zhe Mei has just made significant progress in scientists’ ability to identify protein structures. In common practice, proteins have either been crystallized and analyzed via x-ray crystallography or packed in a liquid solution and analyzed using nuclear magnetic resonance (NMR). Yet neither approach is consistently accurate for all proteins, and results differ. To understand why, Mei and her team built a database of x-ray crystallography protein structures at various temperatures. Subsequently, the team built a mathematical model of the ways in which proteins pack together, either forming solid crystals or bundles in solution for NMR. In success, the researchers not only found that packing density can explain the difference in protein structure between both measurement techniques, but were also able to study how temperature influences structure.

Why it’s important: A key building block for everything from organ tissue to hormonal regulation, proteins are responsible for much of our biological machinery, and each protein’s function is largely defined by its complex structure. Predicting and visualizing protein structure, however, has been a seemingly insurmountable challenge, prompting scientists to develop complex algorithms and even launch crowdsourcing platforms. Yet mathematical modeling can be invaluable in reconciling differences between different measurement and imaging techniques—both improving biochemistry research methods and revealing unknown relationships between our biology and external variables. | Share on Facebook.

Topics: Abundance Insider Space AI Artificial Intellegence IoT driverless autonomous vehicles self-driving cars physics computation
12 min read

Abundance Insider: August 16th, 2019

By Peter H. Diamandis on Aug 16, 2019

In this week's Abundance Insider: NYC's first driverless shuttle service, universe-generating supercomputers, and the new legal debate of patent-holding AIs.

P.S. Send any tips to our team by clicking here, and send your friends and family to this link to subscribe to Abundance Insider.

P.P.S. Want to learn more about exponential technologies and home in on your MTP/ Moonshot? Abundance Digital, a Singularity University Program, includes 100+ hours of coursework and video archives for entrepreneurs like you. Keep up to date on exponential news and get feedback on your boldest ideas from an experienced, supportive community. Click here to learn more and sign up.

New York’s first-ever driverless shuttle service has now hit the road.

What it is: Just last week, autonomous vehicle (AV) startup Optimus Ride became the first public AV offering in New York City, providing shuttle rides to passengers in Brooklyn's Navy Yard. While carrying both a safety driver and software operator, and restricted to a 1.1-mile loop of private roads, the shuttle service is already expected to serve over 16,000 passengers per month. Lowering consumers' barrier to use, Optimus has even made the service free, running between a NYC Ferry stop and the Yard’s Cumberland Gate to embed itself in the daily routine of thousands of commuters.

Why it’s important: As regulatory frameworks continue to catch up with AV technology, public trust is critical. By launching its shuttle service at the Navy Yard (private property exempt from DMV regulation), Optimus can tap into an existing passenger pool with rigidly defined routes and far fewer safety concerns. This choice further reflects Optimus’s strategy of deploying its service in residential communities, corporate and university campuses, resorts, and similarly well-structured environments. Providing a lower-risk market entry route, these “enclosed network” transportation services are already predicted to exceed a combined value of $600 billion, according to Optimus’s founders. An alternative to personal vehicles’ incremental addition of adaptive cruise control, brake assist, and hands-free parallel parking, Optimus-like shuttle services may vastly accelerate AV’s broader public adoption. | Share on Facebook.
 

Google’s AI researchers built an open-sourced soccer simulator to train next-gen machine learning algorithms.

What it is: Developing what we might call an AI playground, AI engineers at Google Research’s Brain Team have now built Google Research Football Environment. A reproducible, customizable, and physics-based environment, the open-sourced soccer video game is an ideal platform for researchers anywhere to test their machine learning algorithms. While games such as Pong, Space Invaders, and Go are now easily mastered by sophisticated algorithms, complex open-world games like Starcraft remain too challenging. Virtual soccer, on the other hand, offers a sufficiently structured (rule-based) game while introducing behavioral uncertainty and diverse team strategies.

Why it’s important: As explained by Research Lead Karol Kurach, Google’s football environment “provides a challenging reinforcement learning problem as football requires a natural balance between short-term control, learned concepts such as passing, and high level strategy.” Given the learning algorithm’s capacity to play against humans and machines alike, the virtual soccer game also introduces a broad range of opponent weaknesses and human irrationality. Yet beyond the game’s utility for immersing machine learning in accurate, real-world environments, GRFE could grant us new soccer strategies that even the world’s most skilled coaches have never considered. Meanwhile, for the AI research community, Google’s new game environment perfectly combines an effective training platform, public code, appropriate complexity, and non-deterministic patterns. | Share on Facebook.

India’s Reliance Jio is launching its IoT network on New Year’s Day, with a plan to connect 1 billion devices.

What it is: Chairman of Reliance Industries, Mukesh Ambani, has now set the conglomerate’s sights on powering at least half of India’s connected devices, projected to exceed 2 billion over the next two years. Leveraging the company’s 4G network, Reliance’s telecom subsidiary, Reliance Jio, is therefore launching a Narrowband Internet of Things (or NBIoT) this coming January. Yet Jio will focus less on in-home appliances, instead targeting low-cost, seamless connectivity between industrial machines in manufacturing, transportation, logistics, and utilities. Reliance's focus on these latter industries also follows the Indian government's $1 billion investment in the construction of 100 smart cities.

Why it’s important: While India’s IoT-connected devices currently number about 60 million, Deloitte estimates a 32X surge in the nation’s online devices by 2020. Growth at this scale would drive a $9 billion domestic market, attracting countless smart device companies and new telecom players. Although we often think of technologically developed nations as best suited to IoT and smart cities, India and other emerging economies are well-positioned to leapfrog traditional network infrastructure, as IoT technology can be more easily embedded during network construction (no retrofitting needed!). As governments begin pouring funds into front-end smart city applications, IoT networks like that of Reliance are providing the backbone for everything from traffic flow optimization to government e-services. Share on Facebook.

Could this AI inventor be the first with a patent to its name?

What it is: Sparking historic legal debate, American engineer Stephen Thaler and legal experts have just filed for UK-, Europe-, and US-based patents in the name of an AI. Dubbed Dabus AI, the algorithm was originally invented by Thaler but went on to autonomously design novel consumer products. Those in the patent filing process include a fractal-based, easy-to-grasp food container and a lamp built to flicker in patterns mirroring brain activity. As might be expected, however, patent offices are showing strong resistance, citing the traditional precedent that legal rights have always gone to humans.

Why it’s important: Now that AIs are becoming inventors, the legal status of human creativity and artificial genius could fundamentally alter how we assign legal responsibility, credit, ownership, and (in the case of product malfunction) culpability. As explained by the BBC, human requirements were originally intended to protect individuals from losing their inventions to corporations. Yet the increasing use of AIs (such as generative adversarial networks, or GANs) to design everything from optimized auto parts to novel drug therapies, is about to birth a far broader debate about intellectual property and the legal definition of invention. | Share on Facebook.

This supercomputer generates millions of universes, helping researchers determine the rules that shaped our own.

What it is: Peter Behroozi and his research team at the University of Arizona Steward Observatory are now employing computer simulation to study one of humanity’s most existential questions: the formation of our universe. Foregoing costly telescopes, the team instead uses a supercomputer to generate millions of virtual universes. Each known as an “Ex Machina,” individual universes contain 12 million galaxies and start 400 million years after the Big Bang. By observing the characteristics of each universe, Behroozi and colleagues can distinguish underlying differences across simulations (relative to our own universe) to determine the viability of today's various formational theories. With a specific focus on the role of dark matter and how simulated galaxies give birth to stars, the research team can thereby infer causal relationships far more difficult to identify through traditional observation.

Why it’s important: Astronomers’ newfound ability to simulate millions of universes could soon allow us to isolate individual causal factors responsible for what we observe in the stars today. Yet supercomputers’ ability to generate massive databases with logically consistent data affects scientific discovery well beyond the origins of our universe. Soon, we might be able to “birth” millions of ecologies or even political simulations, each bound by their own set of parameters. In success, supercomputers and AI-generated simulations could thereby help researchers identify causal links, optimal conditions, and even theoretical flaws within any scientific field imaginable. | Share on Facebook.

Astronomer David Kipping’s proposed “terrascope” (a planetary telescope) would use Earth’s atmosphere as a giant lens.

What it is: Telescopes capable of observing far-off worlds usually exceed billions in cost and can span the equivalent of multiple football fields. What if we could instead use the Earth as a giant telescope lens, dramatically cutting down on cost and size? Enter Columbia University’s David Kipping, an astronomer who has now developed designs for a “Terrascope.” When light hits the Earth, it refracts through the Earth’s atmosphere. This refraction closely mimics the lensing behavior of standard telescopes and reading glasses. Kipping’s thought proposal therefore suggests that we harness the Earth itself as a giant lens, placing a space telescope at the focal point. In theory, this configuration would boast the light-gathering power of a 150-meter telescope, but cost far less than alternative astronomical observation systems.

Why it’s important: While many technical challenges remain, Kipping’s paper provides first principles engineering solutions that validate the efficacy of a conceptual Terrascope. Today, Earth-based telescopes are astronomically expensive. Kipping estimates that replicating the results of a Terrascope-scale system would require a 100 meter (as opposed to 1 meter) terrestrial lens, not to mention upwards of $35 billion. Leveraging an entire planet as our lens, however, could offer an extraordinary new method for imaging distant, space-faring objects and even earth-like planets. How else might one apply Kipping’s first principles approach to astronomy and engineering? | Share on Facebook.

What is Abundance Insider?

This email is a briefing of the week's most compelling, abundance-enabling tech developments, curated by my team of entrepreneurs and technology scouts, including contributions from standout technology experts and innovators.

Want more conversations like this?

At Abundance 360, a Singularity University program, we teach the metatrends, implications and unfair advantages for entrepreneurs enabled by breakthroughs like those featured above. We're looking for CEOs and entrepreneurs who want to change the world. The program is highly selective. If you'd like to be considered, apply here

Abundance Digital, a Singularity University program, is an online educational portal and community of abundance-minded entrepreneurs. You’ll find weekly video updates from Peter, a curated newsfeed of exponential news, and a place to share your bold ideas. Click here to learn more and sign up.

Know someone who would benefit from getting Abundance Insider? Send them to this link to sign up.

Topics: Abundance Insider Space AI Artificial Intellegence IoT driverless autonomous vehicles self-driving cars physics computation
6 min read

Forging a >50% renewable electric economy by 2030

By Peter H. Diamandis on Jun 30, 2019

By 2030, more than 50 percent of the U.S. economy will run on electricity derived from renewables. What are the implications as we shift the U.S. and global energy economies away from fossil fuels?

Topics: Energy Abundance Transportation Exponentials environment Tesla Batteries driverless autonomous vehicles self-driving cars exponential technology electric vehicles internal combustion engine cars ridesharing electric fleets GM Cruise future of transportation personal vehicles oil consumption EVs EV footprint electric vehicle technology energy storage oil ecological transit end of ICE future of driving Nissan toyota Waymo Elon Musk UPS fossil fuels
6 min read

In ten years, you will not own a car....

By Peter H. Diamandis on Jun 23, 2019

The era of the internal combustion engine (ICE) car is ending. We may have reached “peak ICE” production this past year.

Topics: Energy Abundance Transportation Exponentials environment Tesla Batteries driverless autonomous vehicles self-driving cars exponential technology electric vehicles internal combustion engine cars ridesharing electric fleets GM Cruise future of transportation personal vehicles oil consumption EVs EV footprint electric vehicle technology energy storage oil ecological transit end of ICE future of driving Nissan toyota Waymo Elon Musk UPS fossil fuels
13 min read

Abundance Insider: June 1st, 2019

By Peter H. Diamandis on Jun 1, 2019

In this week's Abundance Insider: Self-driving USPS trucks, CRISPR in space, and multilingual robot writers.

Cheers,
Peter, Marissa, Kelley, Greg, Bri, Jarom, Joseph, Derek, Jason, Claire, Max and Nora

P.S. Send any tips to our team by clicking here, and send your friends and family to this link to subscribe to Abundance Insider.

P.P.S. Want to learn more about exponential technologies and hone in on your MTP/ Moonshot? Abundance Digital, a Singularity University Program, includes 100+ hours of course work and video archives for entrepreneurs, like you. Keep up to date on exponential news and get feedback on your boldest ideas from an experienced, supportive community. Click here to learn more and sign up.

Topics: Abundance Insider Space Robotics Transportation health Artificial Intellegence robots autonomous vehicles self-driving cars biotech
12 min read

Top 5 Energy & Transportation Breakthroughs (2019 - 2024)

By Peter H. Diamandis on May 12, 2019

The energy and transportation industries are being aggressively disrupted by converging exponential technologies.

Topics: Energy Abundance Transportation Abundance 360 a360 solar energy autonomous vehicles self-driving cars convergence catalyzer convergence electric vehicles wind power geothermal solar cells solar power internal combustion engine cars ridesharing
17 min read

Abundance Insider: April 26th, 2019

By Peter H. Diamandis on Apr 26, 2019

In this week's Abundance Insider: Tesla robo-taxis, eco-friendly transparent wood, and Alphabet's Wing drones get FAA certification.

Cheers,
Peter, Marissa, Kelley, Greg, Bri, Jarom, Joseph, Derek, Jason, Claire, Max and Nora

P.S. Send any tips to our team by clicking here, and send your friends and family to this link to subscribe to Abundance Insider.

P.P.S. Want to learn more about exponential technologies and hone in on your MTP/ Moonshot? Abundance Digital includes 100+ hours of course work and video archives for entrepreneurs, like you. Keep up to date on exponential news and get feedback on your boldest ideas from an experienced, supportive community. Click here to learn more and sign up.

P.P.P.S. I am looking for a talented university student with an exceptional ‘Hacker’ skillset to join me this summer for an out-of-this-world internship experience. Do you know any talented university student entrepreneurs, innovators, and makers who would be a great fit for the role? Please share. Click here to learn more and apply now.

Tesla Takes Aim At Uber And Lyft With Plans To Roll Out 1 Million Robo-Taxis By Next Year

What it is: This week, Elon Musk revealed that Tesla plans to roll out autonomous Robo-Taxis by next year. While he acknowledged the massive regulatory hurdles ahead for this project, Musk said that “Next year for sure, we will have over 1 million Robo-Taxis on the road.” Once rolled out, Tesla owners will be able to offer their cars onto the ‘Tesla Network’ via the Tesla mobile App, so that other people can use it in a ridesharing fashion similar to Uber and Lyft. Tesla estimates Tesla owners will be able to earn over $30,000 per year from offering their car as a Tesla Network Robo-Taxi. “The fundamental message that consumers should be taking today is that it is financially insane to buy anything other than a Tesla,” he said.

Why it's important: Earlier this year, Lyft saw a massive IPO with a current market cap of over $16 billion. Uber is expected to go public with a valuation of over $90 billion. Now, Tesla is entering the game to disrupt this already-disruptive industry. With millions of autonomous-ready cars already on the road, Tesla is well equipped to transform the ridesharing landscape. With its new autonomous plans, Tesla is set to dramatically undercut Uber and Lyft ($0.18 per mile vs. $2 to $3 per mile), a boon to Tesla owners and ridesharing customers alike. Billions of dollars worldwide are being pumped into R&D to make autonomous cars commonplace. How will you leverage this colossal opportunity?  Share on Facebook

Spotted by Claire Adair / Written by Max Goldberg 

Alphabet’s Wing Drones Get FAA Approval For U.S. Package Delivery

What it is: The U.S. Federal Aviation Administration has awarded Alphabet-owned drone delivery startup Wing the first Air Carrier Certification. With this certification, the U.S. officially joins Canberra, Australia, where Wing has been testing delivery drones since 2014. The permit enables Wing to deliver goods from local businesses to homes, even flying over civilians and out of the drone operator's line of sight. In “the coming weeks,” Wing will begin a pilot program in the Blacksburg and Christiansburg areas of Virginia.

Why it's important: Delivery drones will transform how we move products around the planet. These vehicles remove the energy inefficiency of moving heavy steel trucks simply to deliver small packages. They also enable rapid point-to-point delivery of essential goods (e.g. medicines, blood plasma), creature comforts (e.g. toilet paper, toothpaste, shampoo) and, importantly, takeout food and groceries. With on-demand autonomous delivery, what essentials will you order directly to your door?  Share on Facebook

Spotted by Marissa Brassfield / Written by Max Goldberg 

This “Transparent Wood” Could Cut the Cost Of Heating Your Home

What it is: A research team led by Celine Montanari at the KTH Royal Institute of Technology in Stockholm has invented a type of transparent wood that can absorb and release heat, making it an ideal construction material for energy-efficient buildings. To advance previous work in transparent wood -- created by removing the lignin from Balsa wood and replacing it with an acrylic to provide strength -- the team added polyethylene glycol to the acrylic, which melts under high temperature and hardens as it cools. According to Monetary, 100 grams of this transparent wood material with the polyethylene glycol inside can absorb up to 8,000 joules of heat, which is roughly what a 1W bulb can produce in two hours.

Why it's important: Materials science and biology aren’t just converging in health sciences, but in construction and manufacturing. Produced at scale, this transparent wood could revolutionize energy-efficient architecture. What technology breakthroughs in adjacent industries might solve a challenge in your business?  Share on Facebook

Spotted by Claire Adair / Written by Jason Goodwin 

FDA Grants First-Ever Clearances To Detect Bradycardia And Tachycardia On A Personal ECG Device

What it is: AliveCor, the company pioneering portable ECG monitoring with KardiaMobile, announced this week that it has received FDA clearance for the detection of Bradycardia and Tachycardia, two arrhythmias that are not Afib and between 40-50 or 100-140 beats per minute, respectively. As expected, patients often become frustrated when results from their ECG devices deliver “inconclusive” or “undetermined.” While low and high heart rates are often benign — such as during sleep (low) or exercise (high) — delivering a clear classification provides patients and their doctors more insight into their care.

Why it's important: Thanks to advances in sensor technology, machine learning, and the ubiquity of smartphones, we're witnessing an explosion in wearables that deliver health insights outside of the hospital and emergency room. (KardiaMobile retails for $100 online and via Amazon.) As FDA and other regulatory agencies continue to foster trust in the market, look for similar announcements in other conditions.  Share on Facebook

Spotted by Marissa Brassfield / Written by Jason Goodwin 

Just 10% Of U.S. Plastic Gets Recycled, But A New Kind Of Plastic Could Change That

What it is: Achieving a number of difficult design specs, researchers have just developed a plastic with special chemical properties that make it perfect for repetitive recycling. Most notably, the plastic has a chemical bond that allows easy separation from additives and conversion to a pure, reusable end product. A tweaked type of glass-like plastic called vitrimer, the material is held together by dynamic covalent diketoenamine bonds that require significantly less energy to break than those of traditional plastics. Yet while a solution of water and a strong acid at room temperature is all that is needed to break down the plastic into its constituent parts, the plastic is also safe from decomposition ahead of schedule, giving it the edge of biodegradable plastic without risk of easy degradation.

Why it's important: Today, a mere 10 percent of all plastic waste is recycled in the U.S., while the remaining refuse continues to populate waterways and landfills at an accelerating pace. Scientists project that a staggering 8 million metric tons of plastic pollution make their way to oceans each year, enough to place 5 grocery bags of plastic waste on every foot of every nation’s coastline. Current plastics and traditional recycling methods produce precious few materials with any value to commercial manufacturers. However, by chemically redesigning plastics to render their recycled constituent parts as good as new, we might be on the alchemist’s cusp of turning trash to treasure. Could this new material be our long-awaited miracle plastic?  Share on Facebook

Spotted by Marissa Brassfield / Written by Claire Adair 

Waymo Is Building A Self-Driving Car Factory In Detroit

What it is: Alphabet subsidiary Waymo has just announced its selection of a Detroit-based facility to serve as the company’s first dedicated factory for autonomous vehicles. Aiming to move into the facility by mid-year, Waymo will partner with American Axle & Manufacturing to repurpose what was most recently used as a sequencing center for a local parts supplier. Soon to undergo a tremendous upgrade, the factory will next serve as a manufacturing site for SAE Level 4 autonomous vehicles, those driving forward Waymo’s autonomous ride-sharing fleets. Granted approval by Michigan Economic Development Corporation in January, the factory will now be able to build out thousands of self-driving cars under Waymo’s partnership with Magna, including autonomous versions of the all-electric Jaguar I-PACE and the Chrysler Pacifica Hybrid minivan.

Why it's important: Bridging the time gap between Detroit’s vehicle-sprouting heyday and the start of a self-driving era, Waymo’s soon-to-be refitted facility marks a committed first step in the scale-up of autonomous ride-sharing fleets. After the recent launch of Waymo One this past December in the Phoenix area, the limited commercial robotaxi service has already expanded at a remarkable pace, hinting at a paradigm shift in the way consumers view car ownership. And as autonomous ride-sharing launches begin to spread across the country and to urban centers abroad, Waymo will be one of many giving rise to a new age of personal transportation.  Share on Facebook

Spotted by Marissa Brassfield / Written by Claire Adair 

Meet The 5 Winning Prototypes In Phase II Of The $2M GoFly Prize

What it is: GoFly, the $2M+, two-year global competition to create a safe, quiet, and ultra-compact personal flyer, just awarded prizes to five teams across the globe for their winning prototypes in the latest phase of the competition. Through partnerships with Boeing, Pratt & Whitney, and 20 international aerospace organizations, GoFly is reinventing the future of transportation. GoFly’s 3,500 Innovators from 103 countries are creating their jet packs, flying motorcycles, human-carrying drones, and futuristic flyers-- all culminating in next year's Final Fly-Off when the teams gather to showcase their innovations and fly them for the world.

Why it's important: GoFly's Phase II announcement brings us one step closer to making the dream of human flight a reality. With the convergence of breakthrough technologies and recent advances in propulsion, electrics, rapid prototyping, sensors and control systems, and lightweight materials, GoFly’s engineers are leveraging these technologies and GoFly’s mentorship platform to create transformative mobility. When the GoFly Final Fly Off takes place next year, these personal flyers will have the ability to transform the way first responders provide aid in natural disasters, packages are delivered, commuters move from home to office, recreational users fly for fun, and athletes participate in all new flying sports. The Final Fly-Off is a year away, so for those interested in forming a GoFly team, please contact info@goflyprize.com.  Share on Facebook

Spotted by Nidhi Chaudhary / Written by Gwen Lighter 

What is Abundance Insider?

This email is a briefing of the week's most compelling, abundance-enabling tech developments, curated by Marissa Brassfield in preparation for Abundance 360. Read more about A360 below.

Want more conversations like this?

At Abundance 360, Peter's 360-person executive mastermind, we teach the metatrends, implications and unfair advantages for entrepreneurs enabled by breakthroughs like those featured above. We're looking for CEOs and entrepreneurs who want to change the world. The program is highly selective. If you'd like to be considered, apply here

Abundance Digital is Peter’s online educational portal and community of abundance-minded entrepreneurs. You’ll find weekly video updates from Peter, a curated newsfeed of exponential news, and a place to share your bold ideas. Click here to learn more and sign up.

Know someone who would benefit from getting Abundance Insider? Send them to this link to sign up.

 
Topics: Abundance Insider Materials Science health Artificial Intellegence environment healthcare Drones self-driving cars wearables mHealth electric vehicles
14 min read

Abundance Insider: April 19th, 2019

By Peter H. Diamandis on Apr 19, 2019

In this week's Abundance Insider: Dedicated self-driving car lanes, 3D printed tiny hearts, and Sweden's electric car-charging roads.

Cheers,
Peter, Marissa, Kelley, Greg, Bri, Jarom, Joseph, Derek, Jason, Nora, Claire and Max

P.S. Send any tips to our team by clicking here, and send your friends and family to this link to subscribe to Abundance Insider.

P.P.S. Want to learn more about exponential technologies and hone in on your MTP/ Moonshot? Abundance Digital includes 100+ hours of course work and video archives for entrepreneurs, like you. Keep up to date on exponential news and get feedback on your boldest ideas from an experienced, supportive community. Click here to learn more and sign up.

Israeli Scientists 3D-Print A Tiny, Live Heart Made With Human Tissue

What it is: For the first time, an Israeli team led by Professor Tal Dvir successfully 3D-printed a tiny, but beating, heart entirely from human cells. The heart is complete with muscles, blood vessels, ventricles and chambers. The cells used to print the heart came from a donor’s fat tissue, changed into embryonic stem cells, and finally differentiated into the various types of heart tissue used in the printing process. The differentiated cells were loaded into a bioprinter, which took 3 to 4 hours to print the small heart. After several days of incubation with oxygen and other nutrients, the cells in the heart began to beat spontaneously. Future advancements and research could lead to 3D-printing a full-sized heart appropriate for humans.

Why it's important: Using a patient’s own cells to make a heart may resolve the immune-rejection issues that currently cause nearly 40 percent of heart transplants to fail. Organ shortages disappear when we have the ability to 3D-print organs. As self-driving cars, Internet of Things and AI technologies help us live longer, safer, and healthier lives, we'll have fewer donors from car accidents, meaning fewer donated organs to the hundreds of thousands of people on transplantation waiting lists. If we can precision-print organs, will we one day be able to reengineer these evolution-driven devices to be more efficient? Imagine 3D-printed lungs optimized for air intake, or hearts designed to be resistant to heart attacks.  Share on Facebook

Spotted by Max Goldberg / Written by Max Goldberg 

China’s Rolling Out Dedicated Highway Lanes For Self-Driving Cars

What it is: According to KPMG, China is currently ranked 20th in the world on its Autonomous Vehicle Readiness Index. To step up its game, the country is developing new road infrastructure with dedicated autonomous lanes. Slated to begin operation in 2020, the first stretch will be a 100 km road connecting Beijing with the Xiongan New Area in Hebei province. The road will embed sensors and electronic tolls that aid in the development of autonomous technology and facilitate easy payment for cab-hailing companies that begin to rely on driverless vehicles.

Why it's important: The idea of dedicated autonomous road infrastructure has been floated in U.S. near Foxconn’s new plant in Wisconsin and in Seattle, without action. Dedicated lanes may not be necessary for true autonomy development, but they would help avoid accidents in the short term, and likely accelerate the expansion of a new vehicles and services provider to the market. If successful, this experiment will provide real-world data for city planners who replicate this idea elsewhere.  Share on Facebook

Spotted by Claire Adair / Written by Jason Goodwin 

A Prominent Publisher Used Machine Learning To Write A Textbook

What it is: Scientific journal publisher Springer Nature just released the first machine generated textbook by a scholarly publisher. Developed by the Applied Computational Linguistics (ACoLi) lab at Goethe University in Frankfurt, “Lithium-Ion Batteries: A Machine-Generated Summary of Current Research” is an attempt to distill insights from the vast amount of research in the area. According to Springer, over 53,000 papers on Lithium Ion batteries have been published in just the last three years. While there is an element of human quality control in the training phase, the algorithm condenses and organizes the preapproved, peer-reviewed publications into coherent chapters and sections, giving researchers just 180 pages to review and consider versus 100,000+.

Why it's important: Exponential technologies are converging, their fundamental research is accelerating, and we’re bringing another 4 billion people online in the next few years. Developing tools to remain abreast of research across a wide set of topics is more critical than ever. How can you use this and other machine learning algorithms to spot or spark new ideas?  Share on Facebook

Spotted by Max Goldberg / Written by Jason Goodwin 

Device Tests Thousands Of Stem Cells Super Fast

What it is: UChicago’s Institute for Molecular Engineering has just developed a “lab-on-a-chip” (LOC) that can study thousands of live stem cells, understanding how each reacts to different molecules and environments. For years, credit card-sized microfluidic devices — composed of tiny chambers, channels and valves — have been used to study reactions in numerous cells. However, while predecessors sported limited chambers and failed to keep cells alive for long-term experimentation, this team’s new microfluidic device has achieved a 15-fold increase (from 100 to 1,500) in the number of automated chambers over existing counterparts, allowing the LOC to perform experiments that would take more than 1 million steps in a traditional lab.

Why it's important: While the tool itself is impressive, its newly enabled experiments have already yielded consequential insights. The researchers even gleaned new rules that determine timing and signaling sequences necessary for stem cell differentiation or renewal, all by examining neural stem cells on the device and analyzing resulting data. With dramatic implications for our understanding of brain development and corresponding treatments, this finding demonstrates just how quickly LOC technology could accelerate stem cell research, unlocking high-throughput experimentation at a fraction of the cost. Yet advanced microfluidic devices are doing more than dematerializing and demonetizing stem cell research; they are now on the cusp of eliminating time, perhaps one of the most stubborn barriers of all.  Share on Facebook

Spotted by Marissa Brassfield / Written by Claire Adair 

Researchers Use Drones To Detect Potholes, Cracks, And Other Road Damage

What it is: A pre-print research paper published to Arxiv.org describes an AI-enabled quadcopter that performs road inspections. The AI system is trained to detect cracks and potholes on city roads. Engineers mounted a stereo camera (a camera with multiple lenses) on a DJI Matrice 100 drone to capture images of the road. These images were then fed through an AI system trained to compare the 3-dimensional depth of real-time images to baseline reference images. The difference between the anticipated baseline and real-time images are plotted on so called ‘disparity’ maps. As seen in the GIF to the left, these systems output a reconstructed surface of the road, and identifies areas of the road that need to be repaired.

Why it's important: Drones are just exiting the Deceptive phase of Peter’s 6 D's and entering into the Disruptive phase, with transformative implications. As this story shows, a skyful of drones complemented by thousands of micro imaging satellites will provide real-time analysis of all aspects of our world, from pothole inspection to city traffic analysis to weather patterns and wildfire detection. How will you and your company leverage the abundance of imaging data that drones and microsatellites are making accessible right now?  Share on Facebook

Spotted by Marissa Brassfield / Written by Max Goldberg 

Sweden Is Building A Road That Recharges Electric Buses That Drive On It

What it is: Reimagining electric vehicle (EV) charging from the ground up (literally), the Swedish transport administration is now experimenting with electric dynamic charging roads. In a $12.5 million showcasing project, the Smart Road Gotland consortium will pilot a 1-mile stretch of e-road between Sweden’s Gotland Island airport and the town of Visby, capable of charging electric trucks and buses as they run over it. Funded primarily by the Swedish government, the project will leverage a Dynamic Wireless Electrification System developed by Israeli company Electreon, a driving lane-embedded infrastructure that powers vehicle batteries wirelessly.

Why it's important: With the goal of building out 2,000km of additional electric dynamic charging roads, Sweden aims to transform one of the nation’s arterial highways into a heavy transport e-road. In success, Electreon’s and others’ commercialized e-road technology could soon pave the way for not only always-charging vehicles, but electric public transport and even low-emissions long-haul trucking. As noted by Electreon VP of business development Noam Ilan, “[this] is the first time ever that a heavy truck will charge wirelessly from the road.” A burgeoning market with unparalleled potential, electric roads may one day leave no transit industry vertical untouched, and no vehicle uncharged...  Share on Facebook

Spotted by Marissa Brassfield / Written by Claire Adair 

What is Abundance Insider?

This email is a briefing of the week's most compelling, abundance-enabling tech developments, curated by Marissa Brassfield in preparation for Abundance 360. Read more about A360 below.

Want more conversations like this?

At Abundance 360, Peter's 360-person executive mastermind, we teach the metatrends, implications and unfair advantages for entrepreneurs enabled by breakthroughs like those featured above. We're looking for CEOs and entrepreneurs who want to change the world. The program is highly selective. If you'd like to be considered, apply here

Abundance Digital is Peter’s online educational portal and community of abundance-minded entrepreneurs. You’ll find weekly video updates from Peter, a curated newsfeed of exponential news, and a place to share your bold ideas. Click here to learn more and sign up.

Know someone who would benefit from getting Abundance Insider? Send them to this link to sign up.

Topics: Abundance Insider Sensors health Artificial Intellegence healthcare Drones trillion sensor economy self-driving cars China Stem Cells electric vehicles israel
9 min read

The Future of Insurance

By Peter H. Diamandis on Oct 14, 2018

We profit from it, we fear it, and we find it impossibly hard to quantify… risk.

Topics: Sensors Entrepreneurship AI health blockchain Artificial Intellegence healthcare IoT connectivity trillion sensor economy autonomous vehicles self-driving cars smart cities industry loans distributed ledger wearables internet of things insurtech digitization insurance connected home devices
8 min read

Perfect Knowledge + Radical Transparency

By Peter H. Diamandis on Jul 29, 2018

We’re rapidly approaching the era of abundant knowledge – a time when you can know anything you want, anywhere you want, anytime you want. An era of radical transparency.

Topics: Abundance AR/VR Sensors networks future SpaceX satellites knowledge Augmented Reality trillion sensor economy autonomous vehicles self-driving cars